$w R=0.0570$
$S=4.119$
2424 reflections
217 parameters
H-atom parameters not refined
$w=4.178 / \sigma^{2}(F)$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$
$\Delta \rho_{\max }=0.80 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e} \AA^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	$U_{\text {eq }}$
Zn	0.24633 (14)	0.13936 (3)	0.08967 (5)	0.0302 (2)
S1	0.6422 (3)	0.1490 (1)	0.1216 (1)	0.0339 (6)
C11	0.6999 (11)	0.1829 (3)	0.2325 (4)	0.0319 (13)
N11	0.5533 (10)	0.2179 (3)	0.2578 (4)	0.0482 (13)
N12	0.8970 (10)	0.1730 (3)	0.2902 (4)	0.0411 (13)
S2	0.0371 (3)	0.0960 (1)	-0.0451 (1)	0.0367 (6)
C21	0.2472 (11)	0.0558 (3)	-0.0826 (4)	0.0293 (13)
N21	0.2280 (10)	-0.0006 (2)	-0.0884 (4)	0.0421 (14)
N22	0.4172 (10)	0.0819 (3)	-0.1086 (5)	0.0434 (15)
031	0.1963 (8)	0.0996 (2)	0.2077 (3)	0.0338 (13)
032	0.3552 (8)	0.0219 (2)	0.1590 (3)	0.0413 (12)
C31	0.2811 (10)	0.0492 (3)	0.2168 (5)	0.0287 (15)
C32	0.2869 (12)	0.0217 (3)	0.3154 (5)	0.0404 (14)
Cl 31	0.0137 (4)	0.0227 (1)	0.3414 (2)	0.0701 (8)
Cl32	0.3908 (8)	-0.0496 (1)	0.3222 (2)	0.0898 (10)
Cl 33	0.4756 (4)	0.0636 (1)	0.4017 (2)	0.0749 (9)
041	0.1347 (8)	0.2189 (2)	0.1109 (3)	0.0363 (12)
042	0.0260 (13)	0.2525 (3)	-0.0361 (4)	0.0916 (14)
C41	0.0533 (12)	0.2560 (3)	0.0498 (5)	0.0421 (14)
C42	-0.0216 (11)	0.3141 (3)	0.0897 (5)	0.0376 (14)
C141	0.0587 (6)	0.3191 (1)	0.2131 (2)	0.0961 (9)
Cl42	-0.3253 (4)	0.3175 (1)	0.0568 (2)	0.0795 (10)
C143	0.0859 (5)	0.3722 (1)	0.0372 (2)	0.0782 (9)
01	0.4433 (11)	0.2087 (2)	-0.0920 (4)	0.0673 (14)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Zn}-\mathrm{S} 1$	$2.316(2)$	$\mathrm{Zn}-\mathrm{O} 31$	$2.012(5)$
$\mathrm{Zn}-\mathrm{S} 2$	$2.291(2)$	$\mathrm{Zn}-\mathrm{O} 41$	$2.000(5)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 41$	$100.0(2)$	$\mathrm{S} 1-\mathrm{Zn}-\mathrm{O} 41$	$104.0(2)$
$\mathrm{S} 2-\mathrm{Zn}-\mathrm{O} 41$	$113.2(2)$	$\mathrm{S} 1-\mathrm{Zn}-\mathrm{O} 1$	$102.3(1)$
$\mathrm{S} 2-\mathrm{Zn}-\mathrm{O} 31$	$111.1(2)$	$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 2$	$123.3(1)$

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	D-H	H... A	D... A	D-H. . A
N11-H112...O41	1.01 (1)	1.975 (4)	2.892 (7)	150 (4)
$\mathrm{N} 22-\mathrm{H} 221 \cdots \mathrm{O}$	0.90 (1)	2.058 (5)	2.940 (8)	166 (5)
O1-H11...S1	1.08 (1)	2.384 (2)	3.338 (6)	146 (3)
O1-H12.. O42	0.97 (1)	2.125 (8)	2.963 (10)	143 (4)
N11-H111.. $\mathrm{Ol}^{\text {i }}$	0.77 (1)	2.197 (6)	2.936 (9)	162 (5)
$\mathrm{N} 12-\mathrm{H} 121 \ldots \mathrm{O} 4{ }^{\text {ii }}$	1.03 (1)	2.049 (6)	2.992 (9)	151 (4)
$\mathrm{N} 12-\mathrm{H} 122 \cdots \mathrm{O} 3{ }^{\text {iii }}$	0.96 (1)	1.973 (5)	2.904 (8)	162 (4)
$\mathrm{N} 21-\mathrm{H} 211 \cdots \mathrm{O} 2^{\text {iv }}$	1.06 (1)	1.970 (5)	2.933 (8)	149 (3)
$\mathrm{N} 22-\mathrm{H} 222 \ldots \mathrm{O} 32^{\text {iv }}$	0.96 (1)	2.020 (5)	2.927 (8)	156 (4)

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1+x, y, z$;
(iv) $1-x,-y,-z$.

Programs used to solve and refine the structure were $S D S$ (Petříček \& Malý, 1990) and SHELX76 (Sheldrick, 1976). Anisotropic displacement parameters were refined for all nonH atoms. All H atoms were located from the final difference Fourier map and were not refined. Geometrical analysis was performed using PARST (Nardelli, 1983). ORTEP (Johnson, 1965) was employed for drawing the molecular structure.

This research was carried out under grant 1/990917/ 93 from the Slovak Ministry of Education and Sciences.

Lists of structure factors, anisotropic displacement parameters, $\mathrm{H}-$ atom coordinates, complete geometry, including distances involving H atoms, have been deposited with the IUCr (Reference: KA1068). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Amiraslanov, I. R., Nadzhafov, G. N., Usubaliev, B. T., Musaev, A. A., Movsumov, E. M. \& Mamedov, Kh. S. (1980). Zh. Strukt. Khim. 21, 140-145.
Cavalca, L., Gasparri, G. F., Andreetti, G. D. \& Domiano, P. (1967). Acta Cryst. 22, 90-98.
Clegg, W., Little, I. R. \& Straughan, B. P. (1986). Acta Cryst. C42, 1701-1703.
Gusejnov, G. A., Musaev, F. N., Amiraslanov, I. R., Usubaliev, B. T. \& Mamedov, Kh. S. (1983). Koord. Khim. 9, 1687-1694.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Petřiček, V. \& Malý, K. (1990). SDS. A System of Computer Programs for the Solution of Structures from X-ray Data. Institute of Physics, Praha, Czech Republic
Rissanen, K., Valkonen, J., Kokkonen, P. \& Leskelä, M. (1987). Acta Chem. Scand. Ser. A, 41, 299-309.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Acta Cryst. (1994). C50, 1904-1906

Trichloromethyltin(IV)

Walter Frank, Guido J. Reiss and Dietmar Kuhn
Fachbereich Chemie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, 67663 Kaiserslautern, Germany

(Received 8 March 1994; accepted 7 July 1994)

Abstract

The crystal structure of trichloromethyltin(IV), $\left[\mathrm{SnCl}_{3}-\right.$ $\left(\mathrm{CH}_{3}\right)$], has been solved from single-crystal X-ray diffraction data. The compound crystallizes isostructurally with tribromomethyltin(IV), $\left[\mathrm{SnBr}_{3}\left(\mathrm{CH}_{3}\right)\right]$. The structure consists of compressed tetrahedral molecules that are arranged in infinite chains along the b axis. The molecules exhibit point-group symmetry $C_{s}(m)$ with only a small deviation from the higher $C_{3 v}(3 m)$ pointgroup symmetry. The molecules are linked through extremely weak chlorine-tin interactions.

Comment

The structure determination of the title compound was undertaken in order to verify a prediction, derived from
the results of ${ }^{35} \mathrm{Cl}$ nuclear quadrupole resonance (NQR) measurements in the solid state (Petrosyan, Yashina, Reutov, Bryuchova \& Semin, 1973), that the Sn atoms are almost octahedrally coordinated.

The compound crystallizes in the centrosymmetric orthorhombic space group Pnma (No. 62) with $Z=4$. Fig. 1 shows the geometry of the molecules that make up the structure. They exhibit $C_{s}(m)$ symmetry, with all atoms except Cl 2 and H 2 lying on the mirror plane. The intramolecular $\mathrm{Sn}-\mathrm{Cl}$ distances differ only slightly from each other (Table 2). The angle between the Sn C bond and the normal of the plane composed of atoms $\mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{Cl} 2 a$ [symmetry code (a): $x, \frac{1}{2}-y, z ;$ Fig. 2] is only 3.5° and the $\mathrm{Cl} \cdots \mathrm{Cl}$ distances are all very similar. Thus, the coordination polyhedron of the Sn atom is a compressed tetrahedron with approximate $C_{3 v}(3 m)$ point symmetry. [$\mathrm{SnCl}_{3}\left(\mathrm{CH}_{3}\right)$] suffers only slight distortion in the solid state, relative to the geometric data determined by gas-phase electron diffraction (Beagley, McAloon \& Freeman, 1974). Fig. 2 shows a part of the infinitechain structure with intermolecular $\mathrm{Sn} \cdots \mathrm{Cl}$ distances of 3.714 (2) \AA. The intermolecular $\mathrm{Sn} \cdots \mathrm{Cl}$ distance is slightly shorter than the sum of the van der Waals radii (Bondi, 1964). It can be assumed, therefore, that these interactions are responsible for the arrangement of the molecules in the infinite chains. The title structure is essentially isostructural with tribromomethyltin(IV) (Weiss, Zhang \& Dou, 1991).

Based on a concept introduced by Pauling (1960) and refined by Brown (Brown \& Altermatt, 1985), bond valences for the $\mathrm{Sn}-X(X=\mathrm{Cl}, \mathrm{C})$ interactions have been calculated, the B parameter being set at 0.37 (Table 2).

Fig. 1. Diagram of $\left[\mathrm{SnCl}_{3}\left(\mathrm{CH}_{3}\right)\right]$ showing the atom-numbering scheme (displacement ellipsoids at the 50% probability level).

Fig. 2. Chain structure along the b axis [symmetry codes: (a) $x, \frac{1}{2}-y$, $\left.z ;(b)-x, 1-y, 1-z ;(c)-x, \frac{1}{2}+y, 1-z\right]$.
$\mathrm{Sn}-\mathrm{C}$ and $\mathrm{Sn}-\mathrm{Cl}$ distances from tetramethylstannane and tetrachlorostannane, determined by gas-phase electron diffraction (Fuji \& Kimura, 1970, 1971), were taken as standard bond lengths $\left(r_{0}\right)$. The valence sum at the Sn atom has been calculated as 4.02 , which is close to the expected value.

Taking into account the calculated bond valence of 0.02 for the interactions between the molecules in the solid state, it is not surprising that these are far too weak to produce a significant effect on the coordination environment of the monomeric species. This was not to be expected a priori, since the structure of dichlorodimethyltin(IV) was found, by X-ray structure determination (Davies, Milledge, Puxley \& Smith, 1970), to have a distorted octahedral Sn environment and a similar octahedral coordination geometry had been postulated for the title compound, derived from ${ }^{35} \mathrm{Cl}$ NQR measurements (Petrosyan et al., 1973).

A refinement of the structure in the alternative noncentrosymmetric space group Pna_{1} (No. 33) has been attempted. The resulting R values, bond lengths and angles show no significant differences to those derived from the refinement in the higher symmetric space group Pnma. However, together with the reported absence of tunnel splitting in inelastic neutron scattering (Weiss, Zhang \& Dou, 1991) and the two observed ${ }^{35} \mathrm{Cl}$ NQR resonances (Petrosyan et al., 1973), the centrosymmetric choice seems to be much more plausible.

Experimental

The air-sensitive $\left[\mathrm{SnCl}_{3}\left(\mathrm{CH}_{3}\right)\right]$ compound was synthesized according to procedures given in the literature (Pfeiffer \& Lehnhardt, 1903). Colourless needles were grown from hydrocarbon solution at low temperature.
Crystal data
$\left[\mathrm{SnCl}_{3}\left(\mathrm{CH}_{3}\right)\right]$
$M_{r}=240.07$
Orthorhombic
Pnma
$a=6.411$ (1) \AA
$b=9.564(2) \AA$
$c=10.637(2) \AA$
$V=652.2(2) \AA^{3}$
$Z=4$
$D_{x}=2.445 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12.97-17.10^{\circ}$
$\mu=5.003 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Transparent needle
$0.7 \times 0.4 \times 0.3 \mathrm{~mm}$ Colourless

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical
$T_{\text {min }}=0.598, T_{\text {max }}=$ 0.999

1985 measured reflections 983 independent reflections 905 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R(F)=0.0477$
$w R\left(F^{2}\right)=0.0860$
$S=4.139$
983 reflections
35 parameters
H atoms refined with common $U_{\text {iso }}$ $w=1 / \sigma^{2}\left(F_{o}^{2}\right)$
$(\Delta / \sigma)_{\max }=-0.319$
$R(F)=0.0477$
$R_{\text {int }}=0.0394$
$\theta_{\text {max }}=29.85^{\circ}$
$h=-9 \rightarrow 1$
$k=-13 \rightarrow 11$
$l=-14 \rightarrow 1$
3 standard reflections frequency: 60 min intensity variation: none

References

Beagley, B., McAloon, K. \& Freeman, J. M. (1974). Acta Cryst. B30, 444-450.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Davies, A. G., Milledge, H. J., Puxley, I. C. \& Smith, P. J. (1970). J. Chem. Soc. A, pp. 2862-2866.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Fuji, H. \& Kimura, M. (1970). Bull. Chem. Soc. Jpn, 43, 1933-1939.
Fuji, H. \& Kimura, M. (1971). Bull. Chem. Soc. Jpn, 44, 2643-2647.
Pauling, L. (1960). In The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd ed. New York: Cornell Univ. Press.
Petrosyan, V. S., Yashina, N. S., Reutov, O. A., Bryuchova, E. V. \& Semin, G. K. (1973). J. Organomet. Chem. 52, 321-331.
Pfeiffer, P. \& Lehnhardt, R. (1903). Ber. Dtsch. Chem. Ges. 36, 30273030.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1994). J. Appl. Cryst. In preparation.
Weiss, A., Zhang, D. \& Dou, S. (1991). Z. Naturforsch. Teil A, 46, 337-343.

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Sn	0.02310 (8)	1/4	0.52960 (4)	0.0488 (2)
C11	0.2001 (3)	1/4	0.3434 (2)	0.0746 (6)
Cl 2	0.1692 (3)	0.4354 (2)	0.63900 (14)	0.0781 (5)
C	-0.3004 (13)	1/4	0.5314 (9)	0.073 (2)

Table 2. Selected geometric parameters ($\AA,{ }^{\circ}$)
Values in square brackets are calculated bond orders.

$\mathrm{Sn}-\mathrm{C}$	$2.074(8)[1.18]$	$\mathrm{Sn}-\mathrm{Cl} 2$	$2.318(1)[0.90]$
$\mathrm{Sn}-\mathrm{Cl} 1$	$2.283(2)[1.00]$	$\mathrm{Sn}-\mathrm{Cl}^{\mathrm{i}}$	$3.714(2)[0.02]$
$\mathrm{C}-\mathrm{Sn}-\mathrm{Cl1}$	$120.3(3)$	$\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{Cl} 2$	$103.58(6)$
$\mathrm{C}-\mathrm{Sn}-\mathrm{Cl} 2$	$113.5(1)$		
	Symmetry code: (i) $-x, 1-y, 1-z$.		

Dispersion corrections and absorption coefficients were taken from International Tables for Crystallography (1992, Vol. C) Tables 4.2.6.8 and 4.2.4.2, respectively.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: SHELXTLPlus (Sheldrick, 1991). Software used to prepare material for publication: SHELXL93.

[^0]
mer-Tris[2-(5-bromo-2-hydroxyphenyl)-2-oxazolinato]aluminium(III) Methanol Solvate

H. R. Hoveyda, Chris Orvig and Steven J. Rettig

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
(Received 23 March 1994; accepted 4 July 1994)

Abstract

The title complex, (OC-6-21)-tris[4-bromo-2-(4,5-dihy-dro-1,3-oxazol-2-yl)phenolato- N, O]aluminium(III) methanol solvate, $\left[\mathrm{Al}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrNO}_{2}\right)_{3}\right] \cdot \mathrm{CH}_{4} \mathrm{O}$, has a slightly distorted octahedral coordination geometry with a meridional arrangement of the ligands. Pertinent $\mathrm{Al}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{N}$ bond distances are $1.839(2)-1.876(2)$ and 2.015 (3) -2.024 (3) \AA, respectively. The methanol solvent is hydrogen bonded to one of the coordinated O atoms.

\section*{Comment}

The synthesis of the title compound, (I), has been published elsewhere (Hoveyda, Karunaratne, Rettig \& Orvig, 1992). The meridional hexacoordinate geometry

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry, including H -atom geometry, have been deposited with the IUCr (Reference: HU1116). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

